matematyka.wiki

matematyka jest prosta

Szukaj

Menu

Postać iloczynowa funkcji kwadratowej

Postać iloczynowa funkcji kwadratowej jest wyrażona następującym wzorem:

$$f(x)=a(x-x_1)(x-x_2)$$

gdzie $x_1$ i $x_2$ są miejscami zerowymi funkcji kwadratowej. Natomiast współczynnik $a\neq 0$.

W przypadku gdy funkcja kwadratowa nie posiada miejsc zerowych, postać iloczynowa funkcji kwadratowej nie istnieje.

W postaci iloczynowej funkcji kwadratowej mamy jawnie podane miejsca zerowe funkcji kwadratowej, które obliczane są ze wzorów:

$$x_1=\frac{-b-\sqrt{\Delta}}{2a}$$

$$x_2=\frac{-b+\sqrt{\Delta}}{2a}$$

Dodatkowo współczynnik $a$ mówi nam w którą stronę skierowane są ramiona paraboli. Dla $a>0$ ramiona paraboli skierowane są w górę, natomiast dla $a<0$ ramiona paraboli skierowane są w dół.

 

Cytat na dziś

Ciało człowieka nie może być narysowane za pomocą cyrkla i linijki, ale powinno być narysowane od punktu do punktu.
A.Durer