matematyka.wiki

matematyka jest prosta

Szukaj

Menu

Postać ogólna funkcji kwadratowej

Postać ogólna funkcji kwadratowej jest zapisywana wzorem:

$$f(x)=ax^2+bx+c$$

gdzie współczynniki $a$, $b$ i $c$ są ustalonymi liczbami, oraz $a\neq0$.

Ze wzoru funkcji kwadratowej w postaci ogólnej możemy odczytać następujące własności funkcji:
jeśli $a>0$ ramiona paraboli skierowane są w górę,
jeśli $a<0$ ramiona paraboli skierowane są w dół.

Ze wzory ogólnego funkcji kwadratowej możemy łatwo obliczyć pierwiastki funkcji kwadratowej, czyli miejsca zerowe. W tym celu najpierw obliczamy wyróżnik kwadratowy, tzw deltę $\Delta$, ze wzoru:

$$\Delta=b^2-4ac$$

Jeśli $\Delta > 0$ funkcja kwadratowa posiada dwa miejsca zerowe, obliczane ze wzorów:

$$x_1=\frac{-b-\sqrt{\Delta}}{2a}$$

$$x_2=\frac{-b+\sqrt{\Delta}}{2a}$$

Jeśli $\Delta = 0$ funkcja kwadratowa posiada jedno miejsce zerowe, obliczane ze wzoru:

$$x_0=\frac{-b}{2a}$$

Jeśli $\Delta < 0$ funkcja kwadratowa nie posiada miejsc zerowych.

Współczynnik $c$ jest miejscem przecięcia się wykresu funkcji z osią Y.

Natomiast współrzędne wierzchołka paraboli $W(p,q)$ obliczymy ze wzorów:

$$p=\frac{-b}{2a}$$

$$q=\frac{-\Delta}{4a}$$

Przy $a>0$ funkcja kwadratowa w wierzchołku ma wartość minimalną, natomiast przy $a<0$ - wartość maksymalną.

 

Cytat na dziś

Jakie to szczęście być matematykiem w naszych czasach!
D.Hilbert